Max. Marks: 100

Third Semester B.E. Degree Examination, Feb./Mar. 2022 Mechanics of Fluids

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. A cylinder of 0.6m³ in volume contains air at 50°C and 0.3M/mm² absolute pressure. The air is compressed to 0.3m³. Find i) Pressure inside the cylinder assuming Isothermal process and ii) Pressure and temperature assuming Adiabatic process. Take K = 1.4. (10 Marks)
 - b. State Pascal's law and derive an expression for it.

(10 Marks)

OR

- 2 a. Explain conditions of equilibrium of a floating and submerged bodies. (10 Marks)
 - b. Derive an expression for Total pressure and Center of pressure in case of vertical plane surface submerged in liquid. (10 Marks)

Module-2

3 a. Explain different types of Fluid flow.

(12 Marks)

b. A 30cm diameter pipe, conveying water branches into two pipes of diameters 20cm and 15cm respectively. If the average velocity 30cm diameter pipe is 2.5m/s, find discharge in this pipe. Also determine the velocity in 15cm pipe if the average velocity in 20cm diameter pipe is 2m/s

(08 Marks)

OR

4 a. Derive Integral form of Momentum equations.

(10 Marks)

b. Derive 3d continuity equation in differential form for a 3d infinitesimal fluid element for steady incompressible flow. (10 Marks)

Module-3

5 a. State Bernoulli's statement and its assumptions. Derive Bernoulli's equation of fluid flow.

(10 Marks)

b. Derive expression for rate of flow through an Orificemeter.

(10 Marks)

OR

- 6 a. The resistance force R of a supersonic plane during flight can be considered as dependent upon the length of Aircraft (ℓ) , Velocity (V), Air viscosity (μ) , Air density (ρ) and Bulk modulus of Air K. Express the functional relationship between the variables and the resisting force using Buckingham's π theorem. (12 Marks)
 - b. What is Similitude? Explain different types of similarities existing between model and prototype. (08 Marks)

Module-4

7 a. Derive an expression for drag and lift.

(06 Marks)

b. Differentiate between a Streamline body and Bluff Body.

(04 Marks)

c. Find the displacement thickness, momentum thickness and energy thickness for the velocity distribution in the boundary layer given by

$$\frac{\mathbf{u}}{\mathbf{U}} = 2\left(\frac{\mathbf{y}}{\delta}\right) - \left(\frac{\mathbf{y}}{\delta}\right)^2$$
.

(10 Marks)

OR

8 a. Explain Boundary layer concept, with neat sketch.

(06 Marks)

b. Derive an expression for drag force on a flat plate due to boundary layer.

(14 Marks)

Module-5

a. A gas is flowing through a horizontal pipe at a temperature of 4°C. The diameter of the pipe is 8cm and at section 1 - 1 in this pipe, the pressure is 30.3N/cm² (gauge). The diameter of the pipe changes from 8cm to 4cm at section 2 - 2, where pressure is 20.3N/cm² (gauge). Find the velocities of the gas at these sections assuming at isothermal process.
 Take R = 287.14Nm/kg K and Atmospheric pressure = 10N/cm². (14 Marks)

b. Derive an expression for velocity of sound for Isothermal process and Adiabatic process.

(06 Marks)

OR

10 a. An Airplane is flying at an altitude of 15km, where the temperature is -50°C. The speed of plane corresponds to Mach number of 1.6. Assuming K = 1.4, R = 287J/kg K for air, find the speed of plane and Mach angle α . (06 Marks)

b. Derive an expression for Stagnation Pressure (P_s) , Stagnation Density (ρ_s) and Stagnation Temperature (T_s) . (14 Marks)